Optimal siting and sizing of distributed energy storage systems via alternating direction method of multipliers
نویسندگان
چکیده
منابع مشابه
Towards optimal stochastic alternating direction method of multipliers: Supplementary material
1. The strongly convex case 1.1. Proof of Lemma 1 Lemma 1. Let f be µ-strongly convex, and let x k+1 , y k+1 and λ k+1 be computed as per Alg. 2. For all x ∈ X and y ∈ Y, and w ∈ Ω, it holds for k ≥ 0 that f (x k) − f (x) + h(y k+1) − h(y) + ⟨w k+1 − w, F (w k+1)⟩ ≤ η k 2 ∥g k ∥ 2 2 − µ 2 ∆ k + 1 2η k [∆ k − ∆ k+1 ] + β 2 [A k − A k+1 ] + 1 2β [L k − L k+1 ] + ⟨δ k , x k − x⟩. By the strong con...
متن کاملTowards an optimal stochastic alternating direction method of multipliers
We study regularized stochastic convex optimization subject to linear equality constraints. This class of problems was recently also studied by Ouyang et al. (2013) and Suzuki (2013); both introduced similar stochastic alternating direction method of multipliers (SADMM) algorithms. However, the analysis of both papers led to suboptimal convergence rates. This paper presents two new SADMM method...
متن کاملBregman Alternating Direction Method of Multipliers
The mirror descent algorithm (MDA) generalizes gradient descent by using a Bregman divergence to replace squared Euclidean distance. In this paper, we similarly generalize the alternating direction method of multipliers (ADMM) to Bregman ADMM (BADMM), which allows the choice of different Bregman divergences to exploit the structure of problems. BADMM provides a unified framework for ADMM and it...
متن کاملDistributed MPC Via Dual Decomposition and Alternating Direction Method of Multipliers
A conventional way to handle model predictive control (MPC) problems distributedly is to solve them via dual decomposition and gradient ascent. However, at each time-step, it might not be feasible to wait for the dual algorithm to converge. As a result, the algorithm might be needed to be terminated prematurely. One is then interested to see if the solution at the point of termination is close ...
متن کاملDistributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Electrical Power & Energy Systems
سال: 2015
ISSN: 0142-0615
DOI: 10.1016/j.ijepes.2015.02.008